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Identifying strong and fast nonlinearities for today’s photonic applications is an ongoing effort1. Materials2–5 and devices6–9

are typically sought to achieve increasing nonlinear interactions. We report large enhancement of two-photon absorption
through intrinsic resonances using extremely non-degenerate photon pairs. We experimentally demonstrate two-photon
absorption enhancements by factors of 100–1,000 over degenerate two-photon absorption in direct-bandgap semiconductors.
This enables gated detection of sub-bandgap and sub-100 pJ mid-infrared radiation using large-bandgap detectors at room
temperature. Detection characteristics are comparable in performance to liquid-nitrogen-cooled HgCdTe (MCT) detectors.
The temporal resolution of this gated detection by two-photon absorption is determined by the gating pulse duration.

S
emiconductors are excellent materials for photonic switching
because of their large third-order nonlinearities, and have been
the subject of extensive studies, both experimental and theoreti-

cal10,11. These nonlinearities, both refractive and absorptive, have
been successfully modelled and experimentally verified in many
material-wavelength combinations12–14. However, little attention has
been paid to theoretical predictions for the case where the input wave-
lengths are vastly different. Consequently, before the present study, no
efforts had been made to study extreme non-degenerate two-photon
absorption (ND-2PA) experimentally. A theoretical treatment of ND-
2PA in direct-bandgap semiconductors using two parabolic bands
has shown that ND-2PA may be expressed by15
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a2(v1; v2) is the ND-2PA coefficient for optical frequencies v1,2 and
their associated irradiances I1,2, Ep is the Kane energy parameter, Egap
is the bandgap energy, n1,2 are the refractive indices, and K is a
material independent parameter.

From the energy denominators in F2, 2PA is expected to increase
drastically if either v1 or v2 becomes small. As 2PA requires h−v1þ
h−v2 ≥ Egap, this means that 2PA increases with the ratio of photon
energies. This can be qualitatively understood by noting that

the allowed–forbidden transition scheme in perturbation theory
dominates 2PA in direct-bandgap semiconductors, as shown by
Wherrett16. Thus, the smaller energy photon is almost resonant to
the intraband (or self ) transition. The limits to this enhancement
are dictated by the linear absorption of the higher energy photon
as it approaches the linear absorption resonance. Hence, the degen-
erate 2PA (D-2PA) case gives the minimum 2PA, and can only be
enhanced by using the Egap

23 dependence in equation (1). This
results in the use of narrow-bandgap semiconductors and thus
mid-infrared (MIR) wavelengths. This Egap

23 dependence was verified
experimentally, revealing D-2PA coefficients for narrow-bandgap
semiconductors such as InSb that are three orders of magnitude
larger than for large-bandgap semiconductors such as ZnSe12,13,17.
The use of extremely non-degenerate photons in wide-bandgap
materials results in 2PA coefficients similar to those obtained
using degenerate photons in narrow-bandgap materials. These
enhancements observed for extreme ND-2PA should also apply to
other material systems provided that the linear absorption band
edge is sufficiently sharp18–20.

The large increase in 2PA for extreme non-degenerate configur-
ations can be applied in a variety of ways. One of the most straight-
forward effects of the simultaneous absorption of two largely
different photon energies is the promotion of a free carrier into
the conduction band. One can monitor the photo-generated
charges in such experiments using a ‘gating’ pulse, where this
pulse can be composed of either high- or low-energy photons. We
use the word ‘gating’ because this intense pulse essentially turns
the detector on to monitor the intensity of the ‘signal’ pulse. If
the gating pulse consists of low-energy photons, such experiments
enable high-sensitivity detection of sub-bandgap-energy photons.
Alternatively, a gating pulse comprising high-energy photon
pulses (but still below the band edge) allows the detection of MIR
photons using a large-bandgap semiconductor.
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Figure 1a shows the detection of femtosecond pulses at 390 nm
(3.18 eV) by a conventional GaN detector with Egap¼ 3.28 eV
(direct output voltage) using MIR gating pulses at 5.6 mm
(6.7% of Egap) (see Supplementary Information for details). The
signal, which is proportional to the photo-generated carrier
density N, is linear in both the MIR and ultraviolet (UV) beam
irradiances, and is given by

dN
dt
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where Is , h−vs and Ig, h−vg are irradiances and photon energies of
signal and gating pulses, respectively. We introduce F 2

symm (x1; x2)
to explicitly show that although the 2PA coefficients are not sym-
metric in the two input frequencies, the detected carrier density is
symmetric in these frequencies, so the signal enhancement is the
same for gated detection of MIR and UV light.

The measured detector responsivity R (5.6 mm; @ 0.5 GW cm22)
is .0.034 A W21 (additional detector parameters are found in the
Supplementary Information). These results are linearly dependent
on the irradiance at 5.6 mm (�0.5 GW cm22) as the effective
‘linear’ absorption is a2(vs; vg)Ig. Corresponding 730 nm pulses
of approximately the same pulse energy as the UV pulses yield a
D-2PA signal voltage that is nearly three to four orders of magni-
tude smaller (indicated by the results in Fig. 1a).

We can also detect weak 5.6 mm by increasing the irradiance of
the 390 nm pulses to act as a gate. Thus a wide-bandgap semi-
conductor (Egap¼ 3.28 eV) can be used for the detection of MIR
light of photon energy 0.22 eV (5.6 mm). However, the cross
absorption term is now accompanied by the D-2PA of the
390 nm pulses, a2(vg; vg),

dN/dt = a2(vg;vg)I2
g/2h−vg + 2a2(vs;vg)IgIs/h−vs (3)

where the signal is 5.6 mm and the gate is 390 nm. The calculated
values of D- and ND-2PA, a2(v390nm; v390nm), and a2(v5600nm;
v390nm), a2(v390nm; v5600nm) are 2.2 cm GW21, 17 cm GW21,
and 240 cm GW21, respectively. This gives a ratio for the IR
gating of 110, whereas the measured ratio is 95. The D-2PA signal
can be suppressed for repetitive pulses using the modulation of
the MIR pulses and lock-in detection, easily allowing for the detec-
tion of sub-100 pJ pulse energies at 5.6 mm (see Supplementary
Information). This is shown in Fig. 1b, where we demonstrate
5.6 mm detection using a GaN detector at room temperature. We
compare the signals with gated detection in GaN using several
390 nm pulse energies with the output voltage from a conventional
liquid-nitrogen-cooled mercury cadmium telluride (MCT) detector.
The results show comparable or even superior performance for the
investigated detectors (see Supplementary Information for details).

There are a few salient facts that need to be stressed regarding
these experiments. As seen in Fig. 1, we are able to directly
compare signals obtained when measuring MIR wavelengths
using either one-photon or two-photon processes. It is obvious
that when using a linear process, the responsivity depends solely
on the overall linear absorption of the material used (that is, aL),
where a is the linear absorption coefficient and L is detector

element thickness. In the ND-2PA case, the effective absorption
coefficient is 2a2Ig. In both cases we desire the overall thickness to
be greater than the absorption depth. We estimate for the exper-
iments demonstrated here that we are well away from this limit
(�2% loss in the active detector region), and there is considerable
optimization that can be performed. Also, because we do not
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Figure 1 | Mid-IR detection using a UV photodiode. a, Log–log plot of the

output voltage of a GaN diode versus 390 nm (3.18 eV, 100 fs) input signal

energy in the presence of temporally overlapped, 300 nJ, 215 fs, 5.6 mm

(0.22 eV) gating pulses. Also shown are outputs versus 365 nm

(linear response) (100 fs), 390 nm without the gating pulses and signal

from D-2PA of 730 nm (1.70 eV, 110 fs) pulses. Lines are fits to either slope

1 (for a linear dependence) or 2 (for a quadratic dependence) with �15mV

of dark voltage. b, Log–log plot of the output voltage of a GaN diode versus

5.6mm (215 fs) input signal energy in the presence of temporally overlapped

390 nm gating pulses (100 fs) of various energies. The grey filled squares

show data for the MCT detector. See Supplementary Information for

detector specifications.
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require high-speed detection, thick materials including waveguide
geometries could be helpful.

In 2PA detection one preserves the signal linearity while
having direct control of the responsivity via the gating pulse irradi-
ance R¼ A.Ig, where A¼ 7.1 × 10212 cm2 A W22 for the 390 nm
gating pulse (A¼ 6.8 × 10211 cm2 A W22 for the MIR gating
pulse). This offers flexibility for some applications that can outweigh
the necessity of having a gating pulse. One can then measure pulsed
low-energy MIR radiation using room-temperature detectors with a
user-controlled responsivity. Also, even though the results of
these experiments are related to the particular material and wave-
length pair, the same approach can be used to measure any other
pair of wavelengths using a material with appropriate bandgap
energy. The bandwidth is determined by a trade-off with the 2PA
enhancement, as will be seen from the transmittance experiments
described in the next paragraph. One possible concern is the
current created through direct D-2PA. However, the D-2PA is not
enhanced; therefore, for practical applications the irradiance levels
needed for the gate pulse should not lead to saturation effects. For
MIR detection, the D-2PA of the gating pulse appears as a back-
ground signal. In our experiments, amplitude noise on the gating
laser pulse dominates the contributions to noise. Noise from the
gated signal is linear in the gate irradiance, whereas the degenerate
2PA noise is quadratic in the gate irradiance. There is therefore a
trade-off between responsivity, which is linear in the gate irradiance,
and this noise, which can have linear or quadratic contributions
(Fig. 1). This is analogous to having a ‘noisy’ detector electronic
amplifier; however, this ‘noise’ is measurable and could in principle
be calibrated out. For this reason, we do not quote a noise-equivalent
power or D* for this detection scheme. However, the minimum
detectable energy (Fig. 1b) is �20 pJ, whereas for MCT the
minimum detectable energy is �200 pJ (for details of detector par-
ameters, such as pre-amplifier and transimpedance gain, see
Supplementary Information). This difference is in large part due
to the fact that we can use modulation techniques with the
ND-2PA gated detection scheme.

An alternative to this new detection method is frequency upcon-
version using second-order nonlinear optical materials in which IR
and visible/near-IR photons are summed to yield photons of suffi-
cient energy to be used with high-quantum-efficiency detectors
such as silicon21–23. The primary similarity is that both detection
schemes result in photocarrier densities proportional to the
product of gate and signal irradiances. However, upconversion
requires phase-matched second-order nonlinear materials. After
years of development, it has resulted in near-unity detection

quantum efficiencies24–26. The ND-2PA method demonstrated
here is considerably simpler, because the detector element itself is
the nonlinear material and no phase-matching is required;
however, considerable research and development is necessary for
it to reach its ultimate limits.

To provide a quantitative picture we performed detailed trans-
mission studies of the direct-bandgap semiconductors ZnSe and
GaAs using various photon energy ratios and picosecond and fem-
tosecond pulses. In these experiments, the transmittance of weak
visible pulses was monitored in the presence of intense MIR
pulses (see Supplementary Information). 2PA coefficients for
ZnSe and GaAs at different photon energy ratios are presented in
Fig. 2a and b, respectively. Large enhancements of ND-2PA values
versus D-2PA values were obtained, by as much as 270× in ZnSe
(photon energy ratio up to 12.5, Fig. 2a) and 127× in GaAs
(photon energy ratio of 10, Fig. 2b). For these semiconductors, the
experimental results agree with theory, except for deviations observed
when the sum of photon energies is less than the bandgap.
This exception is probably due to absorption in the Urbach tail27.

This greatly enhanced 2PA should enable many new opportu-
nities beyond detection, such as all-optical switching28 using
microring resonators29, and waveguides30 with direct-bandgap semi-
conductors such as GaAs31, where the resonating light is just below
the band edge. Here the cavity Q can be easily spoiled using IR
pulses via ND-2PA. Gated detection has also been suggested for
quantum detectors32,33. The enhancement noted here makes these
much more attractive. Finally, we note that this very large enhance-
ment of 2PA in the case of non-degenerate photons implies that
two-photon gain34 should show a similar enhancement with non-
degeneracy. Experiments have shown two-photon emission of
very non-degenerate photons.

The application to sub-bandgap detection in the commercial
GaN detector studied here is far from optimized for the detection
of extremely non-degenerate photons. For example, the ND-2PA
could be significantly increased by using a thicker detector
element to efficiently absorb the radiation. The intrinsic detector
temporal response is irrelevant, because the speed of detection is
determined by the gating pulsewidth. In addition, an ultralow-
noise optical comb source could be used as the gating source,
which would greatly improve the signal-to-noise ratio35.

Methods
The experimental ND-2PA data presented in this Article were taken in a standard
pump–probe non-collinear geometry with a small angle (�108) between the pump
and probe beams, using either picosecond or femtosecond pulses. A Ti:sapphire
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laser system (ClarkMXR, CPA 2010) was used as a source of femtosecond pulses,
producing �1.4 mJ, �150 fs (FWHM), 780 nm pulses at a repetition rate of 1 kHz.
The output of the laser system was divided into two pulses by a beamsplitter.
A portion of the 780 nm light was used to pump an optical parametric
generator/amplifier (OPG/A, TOPAS-800, Light Conversion) to generate MIR
pulses. For the near-IR (1.7–2.5 mm, used for transmission experiments) an idler
pulse was used, but for longer wavelengths we used difference frequency generation
(DFG) of signal and idler pulses. The irradiance of the IR pulses was controlled by a
calibrated pair of BaF2 wire-grid polarizers (Specac). The remainder of the 780 nm
output was temporally delayed and used either to generate a weak white-light
continuum (WLC, used as a probe for bulk semiconductor measurements) or to
generate an intense second harmonic (390 nm) and used as a strong pump pulse for
gated detector measurements. WLC was generated either in water (1 cm cell) or in a
2-mm-thick piece of CaF2. Individual wavelengths were selected from the WLC
using a set of narrow band-pass interference filters (Melles Griot, CVI) with a
spectral bandwidth of �8 nm (FWHM). The temporal width of the spectrally
filtered pulses was between 140 fs and 160 fs, as verified by autocorrelation
measurements. Pulsewidths in the femtosecond MIR were determined from
cross-correlation measurements to be �215 fs (FWHM). In all ND-2PA
experiments the MIR was modulated using a mechanical chopper at 283 Hz,
synchronized with the repetition rate from the Ti:sapphire laser. A lock-in
amplifier was then used to record the signals. This MIR modulation ensured that
D-2PA did not contribute to the lock-in output.

A similar set-up was used for the picosecond experiments. A mode-locked
Nd:YAG laser system (EKSPLA) produced �30 ps (FWHM) pulses of 110 mJ at
1,064 nm and a repetition rate of 10 Hz. The fundamental pulses were converted to
the third harmonic at 355 nm, which then pumped a lithium triborate, LiB3O5
(LBO)-based OPG/OPA. The MIR pump pulses were obtained using a DFG
process, mixing 1,064 nm output from the laser and the idler pulse from a second
similar OPG/OPA. The probe beam had a maximum energy of a few nanojoules and
a spot size smaller than that of the pump, as measured by knife-edge scans. This
assured an irradiance in the probe beam smaller (by at least a factor of 100) than
that of the pump beam. This caused minimal losses from D-2PA of the probe
(,0.5%, which is at our noise limit). Pulsewidths from the picosecond OPG/OPA
were measured by pump–probe and cross-correlation experiments to be 10–13 ps
(FWHM), depending on the spectral region.

For the femtosecond gated detection experiments, we used a conventional PIN
GaN detector with an active area of 0.25 mm2 and a total GaN thickness of 5 mm, as
determined using focused ion beam instrument (FEI 200 TEM FIB) cutting and
imaging, with p- and i-GaN regions estimated to be ,1 mm in thickness36. This
detector was used in photoconductive mode, with a preamplifier gain factor of 40
(transimpedance gain, 400 × 103 V A21) and a variable reverse bias voltage from
1 to 4 V. Measurements of extreme ND-2PA in the GaN detector element resulted in
cross-correlation of MIR (5.6 mm @ 0.5 GW cm22) pulses with near-UV (390 nm)
pulses (Supplementary Fig. S1). The experimental results yielded �230 fs (FWHM)
for the MIR pulses, assuming Gaussian temporal profiles. The detector response
voltage presented in Fig. 1a (390 nmþ 5.6 mm curve) was recorded at zero time
delay between the MIR and UV pulses. The detection of MIR pulses at 5.6 mm using
gating pulses at 390 nm of different irradiances is presented in Fig. 1b. The
background signal from D-2PA of the 390 nm pulses was eliminated by modulation
of the weak MIR signal and the use of lock-in detection. The calculated D-2PA
coefficient for 390 nm was �2.2 cm GW21, which is more than two orders of
magnitude less than the ND-2PA of �240 cm GW21.

A conventional liquid-nitrogen-cooled HgCdTe (MCT) detector (Electro-
Optical Systems Inc., model MCT14-040-E-LN6; active area, 16 mm2, noise
equivalent power (NEP)¼ 23 × 10212 W Hz21/2, D*¼ 1.7 × 1010 cm Hz1/2 W21,
R¼ 7.8 × 103 V W21 @ preamp out, pre-amp gain of 100, transimpedance gain
5 × 103 V A21) was used in the experiments for comparison. As discussed, for the
case of non-degenerate gated detection, the signal is linearly proportional to the

gate pulse irradiance R¼ A.Ig, where AIR gate¼ 6.8 × 10211 cm2 A W22 and

AUV gate¼ 7.1 × 10212 cm2 A W22). As an example, the measured values are
RIR gate¼ 0.034 A W21 for 0.5 GW cm22 of 5.6 mm gate pulse irradiance, and
RUV gate¼ 0.032 A W21 for 4.5 GW cm22 of 390 nm gate pulse irradiance.
Parameters used in the detection experiments and associated calculations37–39

are given in Supplementary Table S1.
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